Exercise 3.14 Solution Example - Hoff, A First Course in Bayesian Statistical Methods
標準ベイズ統計学 演習問題 3.14 解答例

Table of Contents

a)

answer

\begin{align*} l(\theta \mid \boldsymbol{y}) &= \sum_{i=1}^n \log p(y_i \mid \theta) \\ &= \sum_{i=1}^n \log \theta^{y_i} (1 - \theta)^{1 - y_i} \\ &= \sum_{i=1}^n y_i \log \theta + (1 - y_i) \log (1 - \theta) \\ &= \left( \sum_{i=1}^n y_i \right) \log \theta + \left( n - \sum_{i=1}^n y_i \right) \log (1 - \theta) \\ \end{align*}

The first order condition is

\begin{align*} & \frac{\sum_{i=1}^n y_i}{\theta} = \frac{n - \sum_{i=1}^n y_i}{1 - \theta} \\ \Leftrightarrow \quad & (1 - \theta) \sum_{i=1}^n y_i = \theta (n - \sum_{i=1}^n y_i) \\ \therefore \quad & \hat{\theta} = \frac{\sum_{i=1}^n y_i}{n} \\ \end{align*}

and

\begin{align*} J(\theta) &= - \frac{\partial^2 l(\theta \mid \boldsymbol{y})}{\partial \theta^2} \\ &= \frac{\partial^2}{\partial \theta^2} \left( \left( \sum_{i=1}^n y_i \right) \log \theta + \left( n - \sum_{i=1}^n y_i \right) \log (1 - \theta) \right) \\ &= \frac{\partial}{\partial \theta} \left( \left( \sum_{i=1}^n y_i \right) \theta^{-1} - \left( n - \sum_{i=1}^n y_i \right) (1 - \theta)^{-1} \right) \\ &= - \left( \sum_{i=1}^n y_i \right) \theta^{-2} - \left( n - \sum_{i=1}^n y_i \right) (1 - \theta)^{-2} \\ \end{align*}

Then, substituting the above \(\hat{\theta}\) into \(J(\hat{\theta})\),

\begin{align*} J(\hat{\theta}) &= - \left( \sum_{i=1}^n y_i \right) \hat{\theta}^{-2} - \left( n - \sum_{i=1}^n y_i \right) (1 - \hat{\theta})^{-2} \\ &= - \left( \sum_{i=1}^n y_i \right) \left( \frac{\sum_{i=1}^n y_i}{n} \right)^{-2} - \left( n - \sum_{i=1}^n y_i \right) \left(1 - \frac{\sum_{i=1}^n y_i}{n} \right)^{-2} \\ &= - \frac{n^2}{\sum_{i=1}^n y_i} - \frac{n^2}{n - \sum_{i=1}^n y_i} \\ \end{align*}

therefore the following holds.

\begin{align*} \frac{J(\hat{\theta})}{n} &= - \frac{n}{\sum_{i=1}^n y_i} - \frac{n}{n - \sum_{i=1}^n y_i} \\ &= -n \left( \frac{1}{\sum_{i=1}^n y_i} + \frac{1}{n - \sum_{i=1}^n y_i} \right) \\ \end{align*}

b)

answer

\begin{align*} & \log p_U (\theta) = \frac{l(\theta \mid \boldsymbol{y})}{n} + c \\ \Leftrightarrow \quad & \log p_U (\theta) = \frac{\left( \sum_{i=1}^n y_i \right) \log \theta + \left( n - \sum_{i=1}^n y_i \right) \log (1 - \theta) }{n} + c \\ \Leftrightarrow \quad & \log p_U (\theta) = \frac{\sum_{i=1}^n y_i}{n} \log \theta + (1 - \frac{\sum_{i=1}^n y_i}{n}) \log (1 - \theta) + c \\ \Leftrightarrow \quad & p_U (\theta) = \theta^{\frac{\sum_{i=1}^n y_i}{n}} (1 - \theta)^{\frac{n - \sum_{i=1}^n y_i}{n}} e^c\\ \end{align*}

Since \(p_U(\theta)\) is probability density,

\begin{align*} & \int_0^1 p_U (\theta) d\theta = 1 \\ \Leftrightarrow \quad & \int_0^1 \theta^{\frac{\sum_{i=1}^n y_i}{n}} (1 - \theta)^{\frac{n - \sum_{i=1}^n y_i}{n}} e^c d\theta = 1 \\ \Leftrightarrow \quad & e^c = \left( \int_0^1 \theta^{\frac{\sum_{i=1}^n y_i}{n}} (1 - \theta)^{\frac{n - \sum_{i=1}^n y_i}{n}} d\theta \right)^{-1} \\ & = B\left(\frac{\sum_{i=1}^n y_i}{n} +1, 2 - \frac{\sum_{i=1}^n y_i}{n} \right)^{-1} \\ \therefore \quad & c = - \log B\left(\frac{\sum_{i=1}^n y_i}{n} +1, 2 - \frac{\sum_{i=1}^n y_i}{n} \right) \\ \end{align*}

and

\begin{align*} - \frac{\partial^2 \log p_U (\theta)}{\partial \theta^2} &= n^{-1} \times \left( - \frac{\partial^2 l(\theta \mid \boldsymbol{y})}{\partial \theta^2 }\right) \\ &= n^{-1} \times J(\theta) \\ &= - \left( \frac{\sum_{i=1}^n y_i}{n} \right) \theta^{-2} - \left( 1 - \frac{\sum_{i=1}^n y_i}{n} \right) (1 - \theta)^{-2} \\ \end{align*}

c)

answer

\begin{align*} p_U (\theta) \times p(y_1, \dots, y_n \mid \theta ) &\propto \theta^{\frac{\sum_{i=1}^n y_i}{n} + \sum_{i=1}^n y_i} (1 - \theta)^{\frac{n - \sum_{i=1}^n y_i}{n} + n - \sum_{i=1}^n y_i} \\ &= \theta^{(1 + n^{-1}) \sum_{i=1}^n y_i} (1 - \theta)^{(1 + n^{-1}) (n - \sum_{i=1}^n y_i)} \\ &= \text{dbeta}\left(\theta, (1 + n^{-1}) \sum_{i=1}^n y_i + 1, (1 + n^{-1}) (n - \sum_{i=1}^n y_i) + 1 \right) \\ \end{align*}

We can consider this as a posterior distribution for \(\theta\).

d)

answer

a’)

\begin{align*} l(\theta \mid \boldsymbol{y}) &= \sum_{i=1}^n \log p(y_i \mid \theta) \\ &= \sum_{i=1}^n \log \frac{\theta^{y_i} e^{- \theta} }{y_i!} \\ &= \sum_{i=1}^n \left( y_i \log \theta - \theta - \log y_i! \right) \\ & = \log \theta \sum_{i=1}^n y_i - n \theta - \sum_{i=1}^n \log y_i! \\ \end{align*}

The first order condition is

\begin{align*} & \theta^{-1} \sum_{i=1}^n y_i - n = 0 \\ \therefore \quad & \hat{\theta} = \frac{\sum_{i=1}^n y_i}{n} \\ \end{align*}

and

\begin{align*} J(\theta) &= - \frac{\partial^2 l(\theta \mid \boldsymbol{y})}{\partial \theta^2} \\ &= \frac{\partial^2}{\partial \theta^2} \left( \log \theta \sum_{i=1}^n y_i - n \theta - \sum_{i=1}^n \log y_i! \right) \\ &= \frac{\partial}{\partial \theta} \left( \left( \sum_{i=1}^n y_i \right) \theta^{-1} - n \right) \\ &= - \left( \sum_{i=1}^n y_i \right) \theta^{-2} \\ \end{align*}

Then, substituting the above \(\hat{\theta}\) into \(J(\hat{\theta})\),

\begin{align*} J(\hat{\theta}) &= - \left( \sum_{i=1}^n y_i \right) \hat{\theta}^{-2} \\ &= - \left( \sum_{i=1}^n y_i \right) \left( \frac{\sum_{i=1}^n y_i}{n} \right)^{-2} \\ &= - \frac{n^2}{\sum_{i=1}^n y_i} \\ \end{align*}

therefore the following holds.

\begin{align*} \frac{J(\hat{\theta})}{n} &= - \frac{n}{\sum_{i=1}^n y_i} \\ \end{align*}

b’)

\begin{align*} & \log p_U (\theta) = \frac{l(\theta \mid \boldsymbol{y})}{n} + c \\ \Leftrightarrow \quad & \log p_U (\theta) = \frac{\log \theta \sum_{i=1}^n y_i - n \theta - \sum_{i=1}^n \log y_i!}{n} + c \\ \Leftrightarrow \quad & \log p_U (\theta) = \frac{\sum_{i=1}^n y_i }{n} \log \theta - \theta - \frac{\sum_{i=1}^n \log y_i!}{n} + c \\ \therefore \quad & p_U (\theta) = \theta^{\frac{\sum_{i=1}^n y_i}{n} } e^{c - \theta} \left( \prod_{i=1}^n y_i! \right)^{-n} \end{align*}

Since \(p_U(\theta)\) is probability density,

\begin{align*} & \int_0^{\infty} p_U (\theta) d \theta = 1 \\ \Leftrightarrow \quad & \int_0^{\infty} \theta^{\frac{\sum_{i=1}^n y_i }{n} } e^{c - \theta} \left( \prod_{i=1}^n y_i! \right)^{-n} d \theta = 1 \\ \Leftrightarrow \quad & e^c = \left( \prod_{i=1}^n y_i! \right)^n \left( \int_0^{\infty} \theta^{\frac{\sum_{i=1}^n y_i}{n} } e^{- \theta} d \theta \right)^{-1} \\ & = \left( \prod_{i=1}^n y_i! \right)^n \Gamma \left( \frac{\sum_{i=1}^n y_i}{n} + 1 \right)^{-1} \\ \end{align*}

and

\begin{align*} - \frac{\partial^2 \log p_U (\theta)}{\partial \theta^2} &= n^{-1} \times \left( - \frac{\partial^2 l(\theta \mid \boldsymbol{y})}{\partial \theta^2 }\right) \\ &= n^{-1} \times J(\theta) \\ &= - \left( \frac{\sum_{i=1}^n y_i}{n} \right) \theta^{-2} \end{align*}

c’)

\begin{align*} p_U (\theta) \times p(y_1, \dots, y_n \mid \theta ) &\propto \theta^{\frac{\sum_{i=1}^n y_i}{n} } e^{- \theta} \times \theta^{\sum_{i=1}^n y_i} e^{-n \theta} \\ &= \theta^{(1 + n^{-1}) \sum_{i=1}^n y_i} e^{-(1 + n) \theta} \\ &= \text{dgamma} \left( \theta, (1 + n^{-1}) \sum_{i=1}^n y_i + 1, 1 + n \right) \\ \end{align*}

We can consider this as a posterior distribution for \(\theta\).

Author: Kaoru Babasaki

Email: [email protected]

Last Updated: 2025-05-02 金 16:29

home Home | ホーム | GitHub