Exercise 3.13 Solution Example - Hoff, A First Course in Bayesian Statistical Methods
標準ベイズ統計学 演習問題 3.13 解答例
a)
answer
より、 (As the above equation holds,)
\begin{align*} \frac{\partial^2 \log p(Y \mid \theta)}{\partial \theta^2} &= \frac{\partial}{\partial \theta} \left( \frac{Y}{\theta} - 1 \right) \\ &= - \frac{Y}{\theta^2} \\ \end{align*}よって、 (therefore, we have)
\begin{align*} I(\theta) &= - E \left[ \frac{\partial^2 \log p(Y \mid \theta)}{\partial \theta^2} \middle| \theta \right] \\ &= E \left[ \frac{Y}{\theta^2} \middle| \theta \right] \\ &= \frac{E[Y \mid \theta]}{\theta^2} \\ &= \frac{\theta}{\theta^2} \\ &= \frac{1}{\theta} \\ \end{align*}したがって、prior distribution は、 (therefore, the prior distribution is)
\begin{align*} p_J(\theta) \propto \times \frac{1}{\sqrt{\theta}} \end{align*}となるが、 \(\int_{0}^{\infty} \frac{1}{\sqrt{\theta}} d\theta \)は無限大に発散するので、確率分布とはならない。 (The integral diverges to infinity, so it does not become a probability distribution.)
b)
answer
Probably yes because we are interested in only the shape of the distribution.