Exercise 3.6 Solution Example - Hoff, A First Course in Bayesian Statistical Methods
標準ベイズ統計学 演習問題 3.6 解答例

Table of Contents

Answer

a)

Taking derivatives with respect to \(\phi\) of both sides of the equation \( \int p(y \mid \theta) dy = 1 \), The left-hand side is

\begin{align*} \frac{d}{d \phi } \int p(y \mid \theta) dy &= \int \frac{d}{d \phi } p(y \mid \theta) dy \\ &= \int \frac{d}{d \phi } c(\phi) h(y) \exp\{\phi t(y) \} dy \\ &= \int h(y) \left( c(\phi) \frac{d \exp \{\phi t(y) \} }{ d \phi } + \frac{d c(\phi)}{d \phi } \exp \{\phi t(y) \} \right) dy \\ &= \int h(y) \left( c(\phi) t(y) \exp \{\phi t(y) \} + c'(\phi) \exp \{\phi t(y) \} \right) dy \\ &= \int h(y) c(\phi) t(y) \exp \{\phi t(y) \} dy + \int h(y) c'(\phi) \exp \{\phi t(y) \} dy \\ &= E[ t(y) \mid \phi] + \frac{c'(\phi)}{c(\phi)} \int c(\phi) h(y) \exp \{\phi t(y) \} dy \\ &\quad (\because c(\phi) \neq 0 \text{ because } p(y \mid \theta) \text{ is a probability density}) \\ &= E[ t(y) \mid \phi] + \frac{c'(\phi)}{c(\phi)} \int p(y \mid \theta) dy \\ &= E[ t(y) \mid \phi] + \frac{c'(\phi)}{c(\phi)}. \\ \end{align*}

Since the right-hand side is 0, \[ E[ t(y) \mid \phi] = - \frac{c'(\phi)}{c(\phi)}. \]

b)

\begin{align*} \frac{d p(\phi)}{d \phi} &= \frac{d}{d \phi} \left( \kappa(n_0, t_0) c(\phi)^{n_0} \exp \{ n_0 t_0 \phi \} \right) \\ &= \kappa(n_0, t_0) \left( \frac{d \ c(\phi)^{n_0} }{d \phi} \exp \{ n_0 t_0 \phi \} + c(\phi)^{n_0} \frac{d}{d \phi} \exp \{ n_0 t_0 \phi \} \right) \\ &= \kappa(n_0, t_0) \left( n_0 c(\phi)^{n_0 - 1} c'(\phi) \exp \{ n_0 t_0 \phi \} + c(\phi)^{n_0} n_0 t_0 \exp \{ n_0 t_0 \phi \} \right) \\ &= \frac{c'(\phi)}{c(\phi)} n_0 \kappa(n_0, t_0) c(\phi)^{n_0} \exp \{ n_0 t_0 \phi \} + n_0 t_0 \kappa(n_0, t_0) c(\phi)^{n_0} \exp \{ n_0 t_0 \phi \} \\ &= \frac{c'(\phi)}{c(\phi)} n_0 p(\phi) + n_0 t_0 p(\phi) \\ \end{align*}

Taking the integral of both sides with respect to \(\phi\), the left-hand side is

\begin{align*} \int \frac{d p(\phi)}{d \phi} d \phi &= \frac{d}{d \phi} \int p(\phi) d \phi \\ &= \frac{d}{d \phi} 1 \\ &= 0. \\ \end{align*}

The right-hand side is

\begin{align*} n_0 \int \frac{c'(\phi)}{c(\phi)} p(\phi) d \phi + n_0 t_0 \int p(\phi) d \phi & = n_0 E \left[ \frac{c'(\phi)}{c(\phi)} \right] + n_0 t_0. \end{align*}

Thus, we have \[ E \left[- \frac{c'(\phi)}{c(\phi)} \right] = t_0. \]

Author: Kaoru Babasaki

Email: [email protected]

Last Updated: 2025-05-02 金 16:29

home Home | ホーム | GitHub