Exercise 3.3 Solution Example - Hoff, A First Course in Bayesian Statistical Methods
標準ベイズ統計学 演習問題 3.3 解答例

Table of Contents

Answer

a)

answer

using Distributions
y_A = [12, 9, 12, 14, 13, 13, 15, 8, 15, 6]
y_B = [11, 11, 10, 9, 9, 8, 7, 10, 6, 8, 8, 9, 7]

n_A, sy_A = length(y_A) , sum(y_A)
n_B, sy_B = length(y_B) , sum(y_B)

a₀_A = 120
b₀_A = 10
a₀_B = 12
b₀_B = 1

# Posterior distributions
dist_A = Gamma(a₀_A + sy_A, 1/(b₀_A + n_A))
dist_B = Gamma(a₀_B + sy_B, 1/(b₀_B + n_B))
mean_A = (a₀_A + sy_A) / (b₀_A + n_A)
mean_B = (a₀_B + sy_B) / (b₀_B + n_B)
["Posterior mean of A:  $mean_A"
 , "Posterior mean of B:  $mean_B"]
Posterior mean of A: 11.85
Posterior mean of B: 8.928571428571429
var_A = (a₀_A + sy_A) / (b₀_A + n_A)^2
var_B = (a₀_B + sy_B) / (b₀_B + n_B)^2
["Posterior variance of A:  $var_A"
 , "Posterior variance of B:  $var_B"]
Posterior variance of A: 0.5925
Posterior variance of B: 0.6377551020408163
# 95% quantile-based confidence intervals
quantile_A = quantile.(dist_A, [0.025, 0.975])
quantile_B = quantile.(dist_B, [0.025, 0.975])
["Posterior 95% quantile of A:  $quantile_A"
 , "Posterior 95% quantile of B:  $quantile_B"]
Posterior 95% quantile of A: [10.389238190941795, 13.405448325642006]
Posterior 95% quantile of B: [7.432064219464302, 10.560308149242365]

b

answer

list_n₀ = 1:50
exp_θ_B = n -> (a₀_B*n + sy_B) / (n + n_B )

# Plot
plot(
    list_n₀, exp_θ_B.(list_n₀), label="Expected value of θ_B",
    xlabel="n₀", ylabel=L"\theta_B", legend=nothing,
    title="Expected value of θ_B as a function of n₀"
)

exercise3.3bplot.jpg

\(n_0 = 35\)くらいで、\(\theta_B\)の期待値が\(\theta_A\)の期待値を上回る。この時の\(\theta_B\)の事前分布のプロットは以下の通り。

(The expected value of \(\theta_B\) exceeds that of \(\theta_A\) when \(n_0 = 35\). The plot of the prior distribution of \(\theta_B\) at this time is as follows.)

n = 35
plot(
    Gamma(a₀_B*n + sy_B, 1/(n + n_B))
    , label=L"Prior distribution of \theta_B when n_0 = $n"
    , legend=false
)

exercise3.3b2plot.jpg

上の分布を見ればわかるように、 \(\theta_B\)の事後期待値が\(\theta_A\)の事後期待値と同じくらいになるためには、 \(\theta_B\)がかなりの確率で 11 の近くに分布しているという信念を反映した事前分布が必要。

(As can be seen from the distribution above, in order for the posterior expectation of \(\theta_B\) to be similar to that of \(\theta_A\), a prior distribution reflecting the belief that \(\theta_B\) is distributed close to 11 with a high probability is required.)

c

answer

日本語

B 系統のマウスは A 系統のマウスと関連性があるとされているので、 A 系統のマウスについての腫瘍数の情報は B 系統のマウスについての腫瘍数の事前情報になり得る。よって、\(p(\theta_A, \theta_B) = p(\theta_A) \times p(\theta_B)\)という仮定は妥当ではなく、 B 系統のマウスと A 系統のマウスの関連の度合いに関する信念のパラメータ\(n_0\)を導入し、 \(p(\theta_B | \theta_A, n_0) = \text{gamma}(E[\theta_A] \times n_0, n_0)\) などという形でモデル化するのが妥当であると考えられる。また、A系統のマウスに関するデータが観測されたあとに B 系統のマウスに関する推測を行う場合には、 \(\theta_B\)の事前期待値に\(\theta_A\)の事後期待値を用いるようなモデリングも可能。

English

The B strain of mice is said to be related to the A strain of mice, so information about the number of tumors in A strain mice can serve as prior information about the number of tumors in B strain mice. Therefore, the assumption \(p(\theta_A, \theta_B) = p(\theta_A) \times p(\theta_B)\) is not valid, and it is reasonable to introduce a parameter \(n_0\) that represents the degree of correlation between the B strain mice and the A strain mice, and model it in the form of \(p(\theta_B | \theta_A, n_0) = \text{gamma}(E[\theta_A] \times n_0, n_0)\). Also, when making inferences about the B strain mice after observing data about the A strain mice, it is possible to model it using the posterior expectation of \(\theta_A\) as the prior expectation of \(\theta_B\).

Author: Kaoru Babasaki

Email: [email protected]

Last Updated: 2025-05-02 金 16:29

home Home | ホーム | GitHub