Exercise 2.5 Solution Example - Hoff, A First Course in Bayesian Statistical Methods
標準ベイズ統計学 演習問題 2.5 解答例
Answer
a
X = 0 | X = 1 | |
---|---|---|
Y = 0 | 0.2 | 0.3 |
Y = 1 | 0.3 | 0.2 |
b
By using the table above (上の表を用いて),
\begin{align*} \text{E}\left[Y\right] &= \text{Pr}(Y = 0) \cdot 0 + \text{Pr}(Y = 1) \cdot 1 \\ &= (0.2 + 0.3) \cdot 0 + (0.3 + 0.2) \cdot 1 \\ &= 0.5 \end{align*}c
The reason why \(Var[Y]\) is greater than \(Var[Y \mid X = 0]\) and \(Var[Y \mid X = 1]\) is that the uncertainty increases because it is not determined from which urn the ball is chosen.
Var[Y]が Var[\(Y \mid X = 0\)] と Var[\(Y \mid X = 1\)]よりも大きいのは、どちらの壺からボールを選ぶか決まっていない分不確実性が大きくなるから。